The Gunasooriya Lab
 

PUBLICATIONS

 
 
040404.jpg
 

Click on the PDF button to download the PDF file.
* = corresponding author(s)
# = co–first authors

 

Submitted


 

28. Understanding material changes of Ag–Cr,Fe,Co,Ni,Cu,Sn bimetallic electrocatalysts during alkaline oxygen reduction
J. Schröder, J.C. Douglin, J.A. Zamora Zeledón, A. Alemana, M. Liu, J. Guo, D. Miller, K.H. Stone, A. Gallo, W. Tarpeh, J.K. Nørskov, D.R. Dekel, G.T.K.K. Gunasooriya*, M.B. Stevens*, T.F. Jaramillo*


 

27. How feasible is Electrocatalytic Nitrate Reduction to Ammonia: A Combined Technoeconomic and Life-Cycle Analysis
Abasi-ofon Tom, Jude Okolie*, G. T. Kasun Kalhara Gunasooriya*


 

26. Oxide Supported Single-atom Catalysts for Oxygen Electrocatalysis
S. A. Keishana Navodye, G. T. Kasun Kalhara Gunasooriya*


 

25. Data-Driven Evaluation on Segregation and Aggregation Energies of Dilute Atom Alloy Catalysts
Arnold Sison, Michael Quaynor, S. A. Keishana Navodye, G. T. Kasun Kalhara Gunasooriya*


 

Published


24. Key Role of Paracrystalline Motifs on Iridium Oxide Surfaces for Acidic Water Oxidation
B. Lu†, C. Wahl†, R. dos Reis, J. Edgington, X.K. Lu, R. Li, M. Sweers, B. Ruggiero, G.T.K.K. Gunasooriya, V. Dravid, L.C. Seitz*
Nature Catalysis, 2024
DOI: 10.1038/s41929-024-01187-4


23. Characterization of Adsorption Sites on IrO₂ via Temperature Programmed O₂ Desorption Simulations
V.K. Ocampo-Restrepo, S. Vijay, G.T.K.K. Gunasooriya, J.K. Nørskov*
Physical Chemistry Chemical Physics, 2024, 26, 17396-17404
DOI: 10.1039/D4CP01213E


22. Key Role of CO Coverage for Chain Growth in Co-Based Fischer–Tropsch Synthesis
K.T. Rommens, G.T.K.K. Gunasooriya, M. Saeys*
ACS Catalysis, 2024, 14, 9, 6696–6709
DOI: 10.1021/acscatal.3c04844


21. Acid Electrolyte Anion Adsorption Effects on IrO₂ Electrocatalysts for Oxygen Evolution Reaction
S.A.K. Navodye, G.T.K.K. Gunasooriya*
The Journal of Physical Chemistry C, 2024, 128, 14, 6041–6052
DOI: 10.1021/acs.jpcc.3c08103


20. Tweaking Photo CO₂ Reduction by Altering Lewis Acidic Sites in Metalated-Porous Organic Polymer for Adjustable H₂/CO Ratio in Syngas Production
R. Paul#, R. Das#, N. Das, S. Chakraborty, C.-W. Pao, Q.T. Trinh, G.T.K.K. Gunasooriya*, J. Mondal*, S.C. Peter*
Angewandte Chemie International Edition, 2023, 62, e202311304
DOI: 10.1002/anie.202311304


Best Practices for the Reproducible Study of Water Electrolysis

19. Water Electrolysis
A.J. Shih#, M.C.O. Monteiro#, F. Dattila, D. Pavesi, M. Philips, A.H.M. da Silva, R.E. Vos, K. Ojha, S. Park, O. van der Heijden, G. Marcandalli, A. Goyal, M. Villalba, X. Chen, G.T.K.K. Gunasooriya*, I. McCrum*, R. Mom*, N. López*, M. T. M. Koper*
Nature Reviews Methods Primers, 2022, 2, 84
DOI: 10.1038/s43586-022-00164-0


Ethylene production in tandem with CO₂ utilization: fine tuning of catalytic properties for selectivity control

18. Ethylene production in tandem with CO utilization: fine tuning of catalytic properties for selectivity control
S.A. Theofanidis#, G.T.K.K. Gunasooriya#, I. Itskou, M. Tasioula, A.A. Lemonidou*
ChemCatChem, 2022, 14, e202200032
DOI: 10.1002/cctc.202200032


Prior to The University of Oklahoma


17. Strategies for Modulating Catalytic Activity and Selectivity of Manganese Antimonates for the Oxygen Reduction Reaction
M.E. Kreider, G.T.K.K. Gunasooriya, Y. Liu, J.A.Z. Zeledón, E. Valle, C. Zhou, J.H. Montoya, A. Gallo, R. Sinclair, J.K. Nørskov*, M.B. Stevens*, T.F. Jaramillo*
ACS Catalysis, 2022, 12, 17, 10826–10840
DOI: 10.1021/acscatal.2c01764


First-Row Transition Metal Antimonates for the Oxygen Reduction Reaction

16. First-Row Transition Metal Antimonates for the Oxygen Reduction Reaction
G.T.K.K. Gunasooriya#, M.E. Kreider#, Y. Liu, J.A.Z. Zeledón, Z. Wang, E. Valle, A-C. Yang, A. Gallo, R. Sinclair, M.B. Stevens*, T.F. Jaramillo*, J.K. Nørskov*
ACS Nano, 2022, 16, 4, 6334–6348
DOI: 10.1021/acsnano.2c00420


Engineering metal-metal oxide surfaces for high-performance oxygen reduction on Ag-Mn electrocatalysts

15. Engineering metal-metal oxide surfaces for high-performance oxygen reduction on Ag-Mn electrocatalysts
J.A.Z. Zeledón, G.T.K.K. Gunasooriya, G.A. Kamat, M.E. Kreider, M. Ben-Naim, M.A. Hubert, J.E.A. Avilés Acosta, J.K. Nørskov, M.B. Stevens*, T.F. Jaramillo*
Energy & Environmental Science, 2022, 15, 1611-1629
DOI: 10.1039/D2EE00047D


Acid anion electrolyte effects on platinum for oxygen and hydrogen electrocatalysis

14. Acid anion electrolyte effects on platinum for oxygen and hydrogen electrocatalysis
G.A. Kamat#, J.A.Z. Zeledón#, G.T.K.K. Gunasooriya, S.M. Dull, J.T. Perryman, J.K. Nørskov, M.B. Stevens,* T.F. Jaramillo*
Communications Chemistry, 2022, 5, 20
DOI: 10.1038/s42004-022-00635-1


Probing the Effects of Acid Electrolyte Anions on Electrocatalyst Activity and Selectivity for the Oxygen Reduction Reaction

13. Probing the Effects of Acid Electrolyte Anions on Electrocatalyst Activity and Selectivity for the Oxygen Reduction Reaction
J.A.Z. Zeledón#, G.A. Kamat#, G.T.K.K. Gunasooriya#, J.K. Nørskov, M.B. Stevens,* T.F. Jaramillo*
ChemElectroChem, 2021, 8, 13, 2467–2478
DOI: 10.1002/celc.202100500


Analysis of Limitations in the Oxygen Reduction Activity of Transition Metal Oxide Surfaces

12. Analysis of Limitations in the Oxygen Reduction Activity of Transition Metal Oxide Surfaces
H. Li#, S. Kelly#, D. Guevarra, Z. Wang, Y. Wang, J.A. Haber, M. Anand, G.T.K.K. Gunasooriya, C.S. Abraham, S. Vijay, J.M. Gregoire, J.K. Nørskov*
Nature Catalysis, 2021, 4, 463–468
DOI: 10.1038/s41929-021-00618-w


Tuning the electronic structure of Ag-Pd alloys to enhance performance for alkaline oxygen reduction

11. Tuning the electronic structure of Ag-Pd alloys to enhance performance for alkaline oxygen reduction
J.A.Z. Zeledón, M.B. Stevens, G.T.K.K. Gunasooriya, A Gallo, A.T. Landers, M.E. Kreider, C. Hahn, J.K. Nørskov, T.F. Jaramillo*
Nature Communications, 2021, 12, 620
DOI: 10.1038/s41467-021-20923-z


Analysis of Acid−Stable and Active Oxides for the Oxygen Evolution Reaction

10. Analysis of Acid−Stable and Active Oxides for the Oxygen Evolution Reaction
G.T.K.K. Gunasooriya, J.K. Nørskov*
ACS Energy Letters, 2020, 5, 3778−3787
DOI: 10.1021/acsenergylett.0c02030

Among the top 20 Most Read articles in ACS Energy Letters.


Realizing Catalytic Acetophenone Hydrodeoxygenation with Palladium Equipped Porous-Organic–Polymer

9. Realizing Catalytic Acetophenone Hydrodeoxygenation with Palladium Equipped Porous-Organic–Polymer
R. Paul, S.C. Shit, T. Fovanna, D. Ferri, B.S. Rao, G.T.K.K. Gunasooriya, D.Q. Dao, Q.V. Le, I. Shown, M.P. Sherburne, Q.T. Trinh*, J. Mondal*
ACS Applied Materials & Interfaces, 2020, 12, 45, 50550−50565
DOI: 10.1021/acsami.0c16680


Effect of Manganese on the Selective Catalytic Hydrogenation of COx in the Presence of Light Hydrocarbons Over Ni/Al₂O₃: An Experimental and Computational Study

8. Effect of Manganese on the Selective Catalytic Hydrogenation of COx in the Presence of Light Hydrocarbons Over Ni/AlO: An Experimental and Computational Study
V. Shadravan, V.J. Bukas, G.T.K.K. Gunasooriya, J. Waleson, M.J. Drewery, J. Karibika, J. Jones, E. Kennedy, A.A. Adesina, J.K. Nørskov, M. Stockenhuber*
ACS Catalysis, 2020, 10, 2, 1535–1547
DOI: 10.1021/acscatal.9b04863


7. Operando Computational Catalysis: Shape, Structure, and Coverage under Reaction Conditions
J.E. De Vrieze, G.T.K.K. Gunasooriya, J.W. Thybaut, M. Saeys*
Current Opinion in Chemical Engineering, 2019, 23, 85–91
DOI: 10.1016/j.coche.2019.03.003


CO Adsorption on Pt(111): From Isolated Molecules to Ordered High–Coverage Structures

6. CO Adsorption on Pt(111): From Isolated Molecules to Ordered High–Coverage Structures
G.T.K.K. Gunasooriya, M. Saeys*
ACS Catalysis, 2018, 8, 11, 10225–10233
DOI: 10.1021/acscatal.8b02371


CO Adsorption Site Preference on Platinum: Charge Is the Essence

5. CO Adsorption Site Preference on Platinum: Charge Is the Essence
G.T.K.K. Gunasooriya, M. Saeys*
ACS Catalysis, 2018, 8, 5, 3770–3774
DOI: 10.1021/acscatal.8b00214


Ethylene Hydrogenation over Pt/TiO₂: A Charge–Sensitive Reaction

4. Ethylene Hydrogenation over Pt/TiO₂: A Charge–Sensitive Reaction
G.T.K.K. Gunasooriya, E.G. Seebauer, M. Saeys*
ACS Catalysis, 2017, 7, 3, 1966–1970
DOI: 10.1021/acscatal.6b02906


Key role of surface hydroxyl groups in C–O activation during Fischer–Tropsch synthesis

3. Key role of surface hydroxyl groups in C–O activation during Fischer–Tropsch synthesis
G.T.K.K. Gunasooriya, A. P. van Bavel, H. P. C. E. Kuipers, M. Saeys*
ACS Catalysis, 2016, 6, 6, 3660–3664
DOI: 10.1021/acscatal.6b00634


CO adsorption on cobalt: Prediction of stable surface phases

2. CO adsorption on cobalt: Prediction of stable surface phases
G.T.K.K. Gunasooriya, A. P. van Bavel, H. P. C. E. Kuipers, M. Saeys*
Surface Science, 642, L6–L10 (2015)
DOI: 10.1016/j.susc.2015.06.024


Controlling the CO oxidation rate over Pt/TiO₂ catalysts by defect engineering of the TiO₂ support

1. Controlling the CO oxidation rate over Pt/TiO₂ catalysts by defect engineering of the TiO₂ support
Y.P.G. Chua#, G.T.K.K. Gunasooriya#, M. Saeys, E.G. Seebauer*
Journal of Catalysis, 2014, 311, 306–313
DOI: 10.1016/j.jcat.2013.12.007



1. Support Effects on Catalytic Performance through Charge Transfer
G.T.K.K. Gunasooriya, M. Saeys*
Nanotechnology in Catalysis: Applications in the Chemical Industry, Energy Development, and Environment Protection, Sels, B.; Van de Voorde, M., Eds. Wiley–VCH: 2016; Vol. 1.
ISBN: 978-3-527-33914-3